– A mérnöki tevékenységek meglehetősen gyorsan fejlődnek, ez bizonyára az ön szakterületén sincs másképp. Merre halad a geomérnöki szakma?
– Néhány évtizede, amikor orvoshoz mentünk, arra kértek bennünket, hogy sóhajtsunk, esetleg köhögjünk. A doktor ebből próbált következtetéseket levonni. Ma már számtalan műszer – MRI, CT stb. – segíti a pontos diagnosztikát. Minél részletesebb képet kapunk az emberi testről és az abban zajló folyamatokról, annál közelebb kerülünk a probléma gyökeréhez, és sokkal testreszabottabb gyógymódot kínálhatunk. Operáció előtt milliméterre pontosan meghatározzuk, mit és hogyan fogunk a beteg szervezetből kioperálni. A mi szakmánkban ugyanez zajlik: felhasználjuk a geofizika technikai vívmányait, például az elektromágneses mérőeszközöket és a különböző radarokat. Feltérképezzük a talajt, és csak azt követően hatolunk be ténylegesen, amikor már megközelítőleg tudjuk, mi vár ránk odalent.
– Melyek a legfontosabb fejlemények az egyes területek, talajrétegek feltérképezése terén?
– Idetartozik az új, teljes áramlású penetrométerek használata, például a T-rúd, a golyó és a piezolabda, amelyeket nagyon lágy talajokhoz használnak. Ezeket a tengerfenéki szennyeződéseknél, meddőhányóknál és a nagyon puha organikus rétegeknél alkalmazhatjuk. Fontos fejlesztések zajlanak a digitális adatgyűjtés terén, egyre jobbak például a kúpos penetrométerek, a szeizmikus piezokúpok és szeizmikus lapos dilatométerek. Ezek már vizsgálat közben is képesek adatot szolgáltatni, amire azonnal lehet reagálni. Különösen fontos ez az olyan projekteknél, ahol mély alapozásra, cölöpözésre és olyan különböző talajmódosítási munkára kell számítani, mint például a dinamikus tömörítés, a mély talajkeverés és kőoszlopok vagy szivárgó csatornák építése.
– Lehet számszerűsíteni, hogy miért éri meg fejleszteni ezeket az eszközöket?
– Az anyatermészet nem könnyen fedi fel a titkait, ezért fontos, hogy a talajt, illetve a kőzetek különböző aspektusait sokféle módon mérjék fel, amiből aztán megalapozott értékelés születik. Ellenkező esetben 30 millió dollárt fizethetünk egy híd alapozásáért, miközben könnyen lehet, hogy csak 12 millió dollárra lett volna szükség. Szóval, ha a kérdést úgy teszi fel, hogy miért kell ezeket az eszközöket fejleszteni, az a válaszom, hogy mert gazdaságos és észszerű. Visszatérve a korábbi kérdésre: a talaj a természet része. Sosem jelenthetjük ki, hogy ilyen vagy olyan lesz, ha lefúrunk. A mi feladatunk a rizikó lehetséges minimumra csökkentése. Amerikában rengeteg ügyvéd kapcsolódik be a különböző építőipari munkákba, már csak ezért is szükséges a hibaforrások minimalizálása. Vagyis a miénk egyfajta megelőző, költségcsökkentő munka.
– Mire számít az elkövetkező években ezen a téren?
– Nagy mennyiségű adatot fogunk használni, amit például a GIS- és a GPS-alapú rendszerek szolgáltatnak. Ezek elérhetők lesznek minden földmérnök számára, így több információ áll majd rendelkezésre az alapozási rendszerek kiválasztására, a talajjavításra és a szennyezett talajok kármentesítésére vonatkozó fontos döntések meghozatalához. Van, illetve lesz feladatunk bőven: ha a tengerszint a prognosztizáltaknak megfelelően emelkedik a közeljövőben, akkor nem hiszem, hogy munka nélkül maradnánk.
– Mely országok járnak élen a kutatások, fejlesztések terén?
– Nem hiszem, hogy erre egyszerű válasz adható. A közelmúltban Izlandon jártam, és amit ők elértek a geotermikus energiák használata terén, az egészen káprázatos. Fűtenek, áramot termelnek és jól élnek a Föld méhében rejlő energia hasznosításából. Száz éve a szigetország Európa egyik legszegényebbje volt, ma pedig az egyik leggazdagabb. Azt hiszem, ebben az ottani geomérnökök találékonysága is jócskán szerepet játszott. Úgy tudom, Magyarországnak közel hasonló adottságai vannak. Tudom, hogy a híres fürdőik erre épültek, de szerintem ebből azért többet is ki lehetne hozni.